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Are Global Renormalization Methods Capable of
Locating Gas�Liquid Critical Points?1

J. A. White2

A global renormalization procedure used recently to calculate thermal
volumetric properties near and to far from the critical point for two square-well
fluids, widths 1.5 and 3.0, with accurately known critical points is here applied
in an effort to determine where the critical point is located for three square-well
fluids, widths 1.375, 1.75, and 2.0, for which accurate simulation data near the
critical point are lacking. The present approach is suggested as an alternative to
extrapolation methods that have been applied in the past and resulted in widely
divergent predictions. A problem in the past has been knowing what to use as
an effective critical point exponent, ;eff , for purpose of the extrapolation. The
present renormalization calculations indicate that rather widely different
behaviors of ;eff as a function of distance from the critical point can be expected
for square wells of different width.

KEY WORDS: critical point; gas�liquid coexistence curve; global renormal-
ization; square-well fluids.

1. INTRODUCTION

A global renormalization procedure has been applied recently to calculate
thermal volumetric properties of a Lennard�Jones fluid [1] and of two
square-well fluids [2], of width 1.5 and 3.0, for which the location of the
gas�liquid critical point has been determined accurately by simulation
methods. What if the location of the critical point is not yet known
accurately? Can renormalization methods be used to find that location?
This question is explored here for several square-well fluids, using the
renormalization procedure together with recent accurate molecular
dynamics (MD) results [3] for coexisting gas and liquid densities when
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not close to the critical point. Because of the difficulty in performing
simulations when close to the critical point, the data in the MD investiga-
tions were obtained at densities either less than 350 or more than 1700

of the critical point density, and at temperatures all 50 or more below the
critical point temperature. Then, based on the simulation data, estimates
were made of the critical point temperature, density, and pressure for each
square well. The values obtained for these critical point quantities differed
substantially from estimates that had been made previously from Monte
Carlo (MC) simulations [4] performed over similar ranges of density and
temperature.

In the present investigation, new estimates are made for the critical point
temperature, density, and pressure by assuming that thermal behavior is
given by global renormalization theory once the square-well potential and
three constant parameters internal to the (approximate) theory are specified.
This provides an alternative to making��perhaps rather questionable��
assumptions about effective critical point exponents to extrapolate from
accurate simulation data to find the critical point.

In the work reported below, estimates have been made for the three
numerical parameters internal to the theory to be used for each square
well in order to make global renormalization calculations of contours of
coexisting vapor and liquid densities. The calculated contours for each
square well are then compared with the MD results [3] for that square
well. The renormalization calculations provide also information about the
temperature dependence of the effective critical point exponent, ;eff . Plots
are presented to show how ;eff varies with temperature for each square
well.

The renormalization procedure used in this investigation is indicated
below in Section 2. Results are summarized in Section 3.

2. METHOD OF CALCULATION

The general renormalization procedure followed here was the same
as that used in Ref. 2. For completeness and convenience of reference, the
procedure is summarized here in Sections 2.1 and 2.2, with some details
specific to the present investigation noted toward the end of Section 2.3.

2.1. RG Equations

In the global renormalization approach the free energy density,
f (T, \), of the fluid (Helmholtz free energy per unit volume) at temperature
T and number density \ is separated into repulsive and attractive parts.
Beginning with f0(T, \)= frepul(T, \), renormalization contributions are
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computed for increasingly long fluctuation wavelengths, beginning with
wavelength *1 .

After n renormalizations (n&1 doublings of the initial fluctuation
wavelength *1) the free energy density f (T, \) is written as

f (T, \)& fn(T, \)&\2a(T, \) (1)

where, for each n (>0),

fn(T, \)= fn&1(T, \)+$fn(T, \) (2)

The &\2a(T, \) is the contribution of the attractive interactions to the free
energy density in mean field approximation. The increment $fn(T, \) at
each order n is

$fn(T, \)=
1

;Vn
ln

In, l (T, \)
In, s(T, \)

(3)

Here ;=1�(kBT ), where kB is Boltzmann's constant, Vn is the averaging
volume, Vn=(z*n �2)3, and the In, s(T, \) and In, l (T, \) are integrals over
the amplitudes of the wave packets of fluctuations of wavelengths *&*n=
2n&1*1 :

In, i (T, \)=|
\$

0
dx e&;Vn Dn, i (T, \, x), i=s, l (4)

In Eq. (4) the upper density limit, \$, is the smaller of \ or \max&\,
where \max does not exceed the density of closest packing of the molecules.
And each Dn, i (T, \, x) is given by

2Dn, i (T, \, x)= f� n&1, i (T, \+x)+ f� n&1, i (T, \&x)&2f� n&1, i (T, \) (5)

where, for i=l,

f� n&1, l (T, \)= fn&1(T, \) (6)

and for i=s,

f� n&1, s(T, \)= fn&1(T, \)&\2a*n
(T, \) (7)

where

a*(T, \)=&| dr cos(k } r) U2(r) grepul(T, \, r) (8)
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In Eq. (8) grepul(T, \, r) is the radial distribution function for the repulsive
interactions, U2(r) is one half the attractive portion of the two-body poten-
tial, and k is the wave vector of the fluctuation of wavelength *=2?�k. In
the limit n � �, for which *n � �, the a*(T, \) becomes simply the a(T, \)
in Eq. (1) above.

The procedure summarized above is capable of determining the free
energy density completely, by taking fully into account details of the
intermolecular potential and contributions made by fluctuations at all
wavelengths, not limiting just to some aspects of contributions made by
fluctuations of asymptotically long wavelengths.

2.2. Implementation for Square-Well Potential

The square-well potential is a spherically symmetric two-body potential
which has the form

�, r�_
U(r)=USW (r)={&=, _<r<R_ (9)

0, r�R_

where r is the distance between the centers of the two molecules.
The free energy density f0(T, \)= frepul(T, \) of the gas comprised of

hard spheres of diameter _ is, apart from a contribution to frepul(T, \)�\
dependent on temperature but independent of density, approximately

;frepul

\
=

4y&3y2

(1& y)2 +ln y (10)

where y= 1
6?\_3. The pressure P=\ �f��\& f calculated using f = frepul

given by Eq. (10) yields, when multiplied by ;�\, the Carnahan�Starling
[5] expression for Z=;P�\=PV�(RT ), namely

Zrepul=\
�

�\ \
;frepul

\ +=
1+ y+ y2& y3

(1& y)3 (11)

In evaluating Eq. (8), the grepul(T, \, r) was approximated as that for a gas
of hard spheres, of diameter _, in Percus�Yevick approximation [6]. And
the attractive part of the potential, U2(r), was taken to be 1

2USW of Eq. (9)
for all r>_ and zero for r�_.

With the above substitutions for the repulsive and attractive portions
of the intermolecular potential, once _, =, and R of the potential and the
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parameters *1 and z internal to the RG theory are specified, the f (T, \)
given by Eq. (1) is completely determined��apart from a contribution
[noted above Eq. (10)] that depends only on temperature and does not
contribute to the pressure��upon completion of n renormalizations.

2.3. Some Calculational Details

In the numerical calculations, the integrations were performed by the
trapezoid rule, using equal size steps. Typically, 1000 steps were used for
the calculation of each a*(T, \), in Eq. (8). For the grepul(T,\, r) appearing
in Eq. (8), the table in Ref. 6 was used, with interpolation when required.
Equation (8) was evaluated for the twelve (dimensionless) densities \_3=
0.0, 0.1, 0.2,..., 1.1 for which tabulated values of grepul were available [6],
and a polynomial of fifth order in \_3 was fitted to each a*(T, \) for use
in Eq. (7), which needs to be evaluated at many intermediate densities in
the range 0<\_3<1.1.

For use in the present investigation, the free energy density f was
evaluated, at (dimensionless, \_3) density intervals of 0.001, for 0<\_3�
1.1; for the lower limit, a small value, \_3=10&12, was used in place of

Table I. Estimated Location of Critical Point for Square Wells of Width 1.375, 1.5, 1.75, and 2

R *1 z =�kB Tc \c* Pc Zc Ref.a

1.375 4.0 0.86 1.022 0.969 0.378 0.083 0.228 W
1.01 0.344 0.10 0.29 EH99
0.974 0.355 0.105 0.30 V92

1.5 4.5 0.94 1.027 1.215 0.319 0.097 0.250 W
1.27 0.306 0.11 0.30 EH99
1.219 0.299 0.108 0.30 V92
1.218 0.310 0.095 0.252 OP99

1.75 6.0 0.98 1.023 1.797 0.262 0.130 0.275 W
1.79 0.267 0.12 0.25 EH99
1.811 0.284 0.179 0.35 V92

2.0 7.0 0.95 1.031 2.671 0.256 0.191 0.280 W
2.61 0.267 0.17 0.24 EH99
2.764 0.225 0.197 0.32 V92
2.684 0.235 M97

a W, This work, for the indicated choice of parameters *1 , z, and =�kB . EH99, MD estimates,
from Table III of Ref. 3. The value listed there for 'c has been multiplied by 6�? to convert
it to \c*. V92, MC estimates from Table VI in Ref. 4. OP99, MC results listed in Table I of
Ref. 7. M97, MC values for N=1364 particles, from Table II of Ref. 8.
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\_3=0 to avoid the logarithmic singularity in Eq. (10). The integrand in
Eq. (4) was evaluated, by trapezoid rule, at the same dimensionless density
intervals, 0.001, using for the maximum integration limit \$_3=\max_3�2=
1.1�2. Smaller choices for that limit, down to \$_3=0.9�2, had almost no
noticeable effect on the results obtained here. Four point interpolation was
used to estimate f when calculating thermal properties at densities inter-
mediate between those at which f had been evaluated.

Calculations of fn(T, \) were carried through to order n=9. After the
first few iterations of the recursion relations for increasing n, contributions
$fn decreased rapidly in size, with negligible contributions except very close
to the critical point for n>6. (Although contours of coexisting liquid and
vapor densities change very little for n>6, values obtained for ;eff close to
the critical point are somewhat more sensitive to renormalization correc-
tions, so calculations were continued to larger n until changes in ;eff were
negligible to within 0.050 of the critical point temperature.)

Fig. 1. Densities at the liquid�vapor coexistence curve for
R=1.375. Circles: MD simulations [3]. Solid line: RG
calculations.
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3. RESULTS

Renormalization calculations were performed as described above for
square wells of width R=1.375, 1.5, 1.75, and 2 to find P* as a function
of T* and \*, where P*=P_3�=, T*=kBT�=, and \*=\_3=N_3�V are
the reduced (dimensionless) pressure, temperature, and density of the fluid.
Results depended upon the choices made for the two internal parameters,
*1 and z, required for the evaluation of Eq. (3). As in the earlier investiga-
tion [2] of square wells of width R=1.5 and 3.0, the well depth, =�kB , used
when carrying through the renormalization calculations, was subsequently
assigned a value up to about 30 greater than the value =�kB=1 used in
the simulations. The choice for = thus served as a third adjustable constant
in the (approximate) renormalization calculations. (The R and _=1 used
in the renormalization calculations were not changed from what had been
used in the simulations.)

Critical points calculated for particular choices of the three adjustable
constants are listed for each of the four square wells in Table I. The values

Fig. 2. Densities at the liquid�vapor coexistence curve for
R=1.5. Circles and solid line as in Fig. 1.
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for *1 listed in the table range from 2.9 to 3.5 times the well width, R_. The
values listed in Table I for the other two renormalization constants, z and
=�kB , were ones for which renormalization calculations gave reasonably
good agreement with MD simulation results [3], as shown in Figs. 1 to 4.
In those figures, as also in the table, the temperature ``T '' is T=T* for the
simulation data, calculated for =�kB=1, and is T==T*�kB>T* for the
renormalization results, calculated using the values for =�kB listed, for
each R, in the table.

Approximately equally good agreement with the MD results was
obtained for choices of *1 that are 10 to 200 larger or smaller than those
listed in Table I, provided the z and =�kB were suitably readjusted [9]. In par-
ticular, a 100 increase in *1 required, for the different width wells in the
table, a 3 to 60 decrease in z and 0 to 0.30 increase in =�kB . Calculated
values (for _=1, =�kB{1) for Tc , \c*, and Pc then changed, for the different
well widths, by &(0.6\0.1)0, +(0.2\0.7)0, and &(3.5\1)0, respec-
tively, and for Zc=Pc* �(\c*Tc*) by &(3.3\1.3)0. These figures probably
represent lower limits on uncertainties for the renormalization values for

Fig. 3. Densities at the liquid�vapor coexistence curve for
R=1.75. Circles and solid line as in Fig. 1.
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Fig. 4. Densities at the liquid�vapor coexistence curve for
R=2. Circles and solid line as in Fig. 1.

the critical point constants listed in the table, which may be in error by
somewhat more than \10 for Tc , \1.50 for \c*, and \50 for Pc

and Zc .
In carrying through the renormalization calculations, it was found that

the width, 2\=\liquid&\vapor , of the coexistence curve varied as a function
of temperature distance, 2T=Tc&T, from the critical point for each
square well with nearly the same critical point exponent ;&1�3 for 2T<
0.01Tc . But the local ;eff=d log |2\�\c |�d log |2T�Tc | for larger 2T
behaved quite differently for the different well widths. This is shown for the
four square wells of widths R=1.375 to R=2 in Figs. 5a and 5b. The ;eff

is seen there to have already quite different values for the different square
wells when 2T=0.03Tc (corresponding to log |2T�Tc | & &1.5). Thus, it
appears that the variation of ;eff with 2T may need to be taken into
account whenever extrapolating data obtained farther than about 10

below Tc in trying to estimate accurately the location of the critical point.
And that variation of ;eff with 2T is different for attractive wells of
different width.
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Fig. 5. Dependence of effective critical point constant ;eff=
d log |2\�\c |�d log |2T�Tc |, for width 2\=\liquid&\vapor of
coexistence curve, on temperature distance 2T=Tc&T below
the critical point for each of the four coexistence curves shown
in Figs. 1�4.
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